
Data-driven parameterizations in numerical models using
data assimilation and machine learning.

Julien Brajard1,2 , Alberto Carrassi3,4 , Marc Bocquet5 , Laurent Bertino1 , Arthur Filoche2 , Dominique
Béréziat, Anastase Charantonis6

December 16, 2020

1NERSC, 2Sorbonne Université, 3University of Reading, 4Unversity of Utrecht, 5École des Ponts ParisTech, 6 ENSIEE

1

Introduction

Forecast skill evolution:
source: ECMWF technicql report 2019

Data availability:
source: Kuenzer et al. (2014)

2

Introduction

Forecast skill evolution:
source: ECMWF technicql report 2019

Data availability:
source: Kuenzer et al. (2014)

2

”Big” question addressed in this talk

Can data help producing better forecasts?

Can data help producing better models?

2

”Big” question addressed in this talk

Can data help producing better forecasts?

Can data help producing better models?

2

Improving the forecast

▶How to improve the forecast skill?

• Estimating accurate initial conditions
• Improving model physics
• Running a Higher-resolution model or having a good parametrization for
unresolved scales.

▶Data can be used to:

• estimation the initial conditions: can be achieved by data assimilation.
• Emulate completely or partially dynamics of the model.

3

Improving the forecast

▶How to improve the forecast skill?

• Estimating accurate initial conditions
• Improving model physics
• Running a Higher-resolution model or having a good parametrization for
unresolved scales.

▶Data can be used to:

• estimation the initial conditions: can be achieved by data assimilation.
• Emulate completely or partially dynamics of the model.

3

Does better forecasts implies a better model (and vice-versa)?

[Pathak et al., 2017]
4

Table of contents

1. Build an emulator

2. Unresolved scale parametrization

2-scales Lorenz model

Coupled ocean-atmosphere model MAOOAM

The case of a never-observed variable

5

Build an emulator

Emulate a numerical model

We assume the existence of unknown dynamical model represented by an ordinary
differential equation:

dx
dt

= ϕ(x) with resolvent xk+1 = M(xk) = xk +
tk+1∫
tk

ϕ(x) dt

Objectif
EmulateM by a data-driven model GW(xk) (e.g. a neural network), by minimizing,
e.g., L(W) =

∑K
k=0 ∥GW(xk)− xk+1∥2 , where K is the number of available samples.

from [Pathak et al., 2017], Fig. 4.

6

Emulate a numerical model

We assume the existence of unknown dynamical model represented by an ordinary
differential equation:

dx
dt

= ϕ(x) with resolvent xk+1 = M(xk) = xk +
tk+1∫
tk

ϕ(x) dt

Objectif
EmulateM by a data-driven model GW(xk) (e.g. a neural network), by minimizing,
e.g., L(W) =

∑K
k=0 ∥GW(xk)− xk+1∥2 , where K is the number of available samples.

from [Pathak et al., 2017], Fig. 4.

6

With sparse and noisy data

Let us consider the case where xk is not known perfectly. We only have access to noisy
and sparse observations yobs

k :

yobs
k = Hk(xk) + ϵok ϵok ∈ N (0,R)

Both the emulator GW(xk) and the state xk has to be determined.

Idea
Combining DA and ML to develop accurate numerical emulator from imperfect data.

What is Data Assimilation good at?
Given a numerical model, some observations and assumptions on uncertainties:

• Estimate the state of a system in an objective way,
• Estimate the uncertainty of the state.

What is Machine Learning good at?
Given a “good enough” dataset:

• Retrieve some hidden relationships in the dataset.

[Abarbanel et al., 2018, Bocquet et al., 2019, Bocquet et al., 2020, Brajard et al., 2020a,
Nguyen et al., 2020]

7

With sparse and noisy data

Let us consider the case where xk is not known perfectly. We only have access to noisy
and sparse observations yobs

k :

yobs
k = Hk(xk) + ϵok ϵok ∈ N (0,R)

Both the emulator GW(xk) and the state xk has to be determined.

Idea
Combining DA and ML to develop accurate numerical emulator from imperfect data.

What is Data Assimilation good at?
Given a numerical model, some observations and assumptions on uncertainties:

• Estimate the state of a system in an objective way,
• Estimate the uncertainty of the state.

What is Machine Learning good at?
Given a “good enough” dataset:

• Retrieve some hidden relationships in the dataset.

[Abarbanel et al., 2018, Bocquet et al., 2019, Bocquet et al., 2020, Brajard et al., 2020a,
Nguyen et al., 2020]

7

With sparse and noisy data

Let us consider the case where xk is not known perfectly. We only have access to noisy
and sparse observations yobs

k :

yobs
k = Hk(xk) + ϵok ϵok ∈ N (0,R)

Both the emulator GW(xk) and the state xk has to be determined.

Idea
Combining DA and ML to develop accurate numerical emulator from imperfect data.

What is Data Assimilation good at?
Given a numerical model, some observations and assumptions on uncertainties:

• Estimate the state of a system in an objective way,
• Estimate the uncertainty of the state.

What is Machine Learning good at?
Given a “good enough” dataset:

• Retrieve some hidden relationships in the dataset.

[Abarbanel et al., 2018, Bocquet et al., 2019, Bocquet et al., 2020, Brajard et al., 2020a,
Nguyen et al., 2020]

7

With sparse and noisy data

Let us consider the case where xk is not known perfectly. We only have access to noisy
and sparse observations yobs

k :

yobs
k = Hk(xk) + ϵok ϵok ∈ N (0,R)

Both the emulator GW(xk) and the state xk has to be determined.

Idea
Combining DA and ML to develop accurate numerical emulator from imperfect data.

What is Data Assimilation good at?
Given a numerical model, some observations and assumptions on uncertainties:

• Estimate the state of a system in an objective way,
• Estimate the uncertainty of the state.

What is Machine Learning good at?
Given a “good enough” dataset:

• Retrieve some hidden relationships in the dataset.

[Abarbanel et al., 2018, Bocquet et al., 2019, Bocquet et al., 2020, Brajard et al., 2020a,
Nguyen et al., 2020]

7

With sparse and noisy data

Let us consider the case where xk is not known perfectly. We only have access to noisy
and sparse observations yobs

k :

yobs
k = Hk(xk) + ϵok ϵok ∈ N (0,R)

Both the emulator GW(xk) and the state xk has to be determined.

Idea
Combining DA and ML to develop accurate numerical emulator from imperfect data.

What is Data Assimilation good at?
Given a numerical model, some observations and assumptions on uncertainties:

• Estimate the state of a system in an objective way,
• Estimate the uncertainty of the state.

What is Machine Learning good at?
Given a “good enough” dataset:

• Retrieve some hidden relationships in the dataset.

[Abarbanel et al., 2018, Bocquet et al., 2019, Bocquet et al., 2020, Brajard et al., 2020a,
Nguyen et al., 2020]

7

Combining DA and ML

More details in [Brajard et al., 2020a]
Emulation of the resolvent combining
DA and ML:

xk+1 = M(xk) ≈ GW(xk) + ϵmk ,

where GW is a neural network
parameterised by W and ϵmk is a
stochastic noise.

▶ For the DA step we use the
Finite-Size Ensemble Kalman Filter
(EnKF-N) [Bocquet 2011].

▶ For the ML step we train a neural net

Proposed DA+ML algorithm

Initialization: W

Fix W, Estimation of xa
1:K using yobs

DA step

Fix xa
1:K , Estimation of W

ML step

Cycle

Stop if converged

8

Combining DA and ML

More details in [Brajard et al., 2020a]
Emulation of the resolvent combining
DA and ML:

xk+1 = M(xk) ≈ GW(xk) + ϵmk ,

where GW is a neural network
parameterised by W and ϵmk is a
stochastic noise.

▶ For the DA step we use the
Finite-Size Ensemble Kalman Filter
(EnKF-N) [Bocquet 2011].

▶ For the ML step we train a neural net

Proposed DA+ML algorithm

Initialization: W

Fix W, Estimation of xa
1:K using yobs

DA step

Fix xa
1:K , Estimation of W

ML step

Cycle

Stop if converged

8

Proposed DA+ML algorithm

▶ Step 1 - Data Assimilation: estimate the state field x1:K (the analysis) and associated
(analysis) error covariance, Pk , based on the fixed model parameters W and using
sparse and noisy data, y.

▶ Step 2 - Machine learning: using x1:K and Pk from DA estimate W

• The neural network can be expressed as a parametric function
GW(xk) = xk + fnn(xk,W) where fnn is a neural network and W its weights; fnn is
composed of convolutive layers.

• The determination of the optimal W is done in the training phase by minimising
the loss function:

L(W) =

K−Nf−1∑
k=0

Nf∑
i=1

∥∥∥G(i)
W (xk)− xk+i

∥∥∥2
P−1
k
,

where Nf is the number of time steps corresponding to the forecast lead time on
which the error between the simulation and the target is minimised (with
“coordinate descent” [Bocquet et al., 2020]).

• Pk is a symmetric, semi-definite positive matrix estimated using the analysis error
covariances from the DA step.

• This time-dependent matrix, Pk , plays the role of the surrogate model error
covariance matrix and gives different weights to each state during the
optimisation process.

9

Numerical experiment: Lorenz 96 model

▶A simulation is performed over K = 40, 000 time steps: xref
0:K

▶ yobs
k = Ht(xref

k) + ϵobs
k ; yobs

t ∈ Rp

• Hk is defined at each time step by
randomly sample p=20 observations
(50% of the state space).

• ϵobs
k is generated using a Gaussian law
of mean 0 and standard deviation 1.

10

Neural Network setup

xk

L
1
:
B
a
t
c
h
N
o
r
m

C
N
N

2

a
b

c

×

C
N
N

3

C
N
N

4

+ GW (xk)

Layer number of unit filter size number of weights
1 (batchnorm) 2
2 (bilinear) 24× 3 5 144× 3

3 (convolutive) 37 5 8917
4 (linear) 1 1 38

Residual bi-linear convolutive neural network (9391 weights)

11

Convergence of the algorithm

▶ The true 1st Lyapunov exponent is Λ1 = 1.67.

▶RMSE-f after 1 time step is shown.

12

Convergence of the algorithm

▶ The true 1st Lyapunov exponent is Λ1 = 1.67.

▶RMSE-f after 1 time step is shown.

12

Emulating the underlying dynamics: Power spectrum density

▶After one cycle, some frequencies are
favoured (see the peak at ∼ 0.8Hz) and
indicate that the periodic signals are
learnt first.

▶At convergence, the surrogate model
reproduces the spectrum up to 5 Hz but
then adds high-frequency noise.

▶ Low frequencies are better observed
and better reproduced after the DA step.

▶ The PSD has been computed using a
long simulation (16, 000 time steps), which
means that the surrogate model is very
stable.

13

Emulating the underlying dynamics: Lyapunov spectrum

▶Accurate unstable spectrum⇒ Same
error growth rate and Kolmogorov entropy,
as the true model.

▶ Less for the neutral and quasi-neutral
part of the spectrum.

▶ This is similar to what found
in[Pathak et al., 2017]. Maybe due to the
slower convergence (linear vs exponential)
of the neutral exps.

▶ The stable part of the spectrum is shifted
toward smaller values⇒ PDFs contracts
faster than in the true model, i.e. surrogate
model more dissipative than the truth.

14

Forecast skill

Hovmøller plot of the true and surrogate models (in Lyapunov time, LT)

▶ The simulations start from the
same initial conditions.

▶Good prediction until 2 LTs.
Error saturation at 4-5 LTs.

15

Sensitivity to observation scenario

vs Obs error
▶RMSE-f deteriorates
as σo increases.

▶Asymptotic RMSE-f
inverse proportional to
σo .

▶ Training on (very)
noisy data leads to
underestimate the
forecast variance (also
less extreme values)

vs # Obs
▶ The perfect
(σobs = 0) and
complete case
(p = 100%) is shown
for reference.

▶ Strong degradation
for p < 50% but little
sensitivity for
p ≥ 50%.

▶ This suggests DA is
successful in providing
accurate analysis as
soon as half of the
domain is observed.

16

Unresolved scale parametrization

Using ML for parametrization

We now assume that we know partially the system dynamics:

x(t+ δt) = Mφ[x(t)] +MUN[(t)],

where:

• x(t) is the state of the dynamical system

• Mφ is the physical model (assumed to be known a priori)

• MUN is the unresolved component of the dynamics to be inferred from data

• δt is the integration time step

Objective
ApproximateMUN is approximated by a data-driven model represented under the
form of a neural network whose parameters are θ: Mθ[x(t)]

It has been done using high-resolution model as the ”truth” [Rasp et al., 2018,
Brenowitz and Bretherton, 2018, O’Gorman and Dwyer, 2018, Bolton and Zanna, 2019]:

• High-resolution model are very expensive (especially in the case of coupled
fast/slow dynamics)

• There is no guaranty that high-resolution models will converge toward the
observed state.

17

Using ML for parametrization

We now assume that we know partially the system dynamics:

x(t+ δt) = Mφ[x(t)] +MUN[(t)],

where:

• x(t) is the state of the dynamical system

• Mφ is the physical model (assumed to be known a priori)

• MUN is the unresolved component of the dynamics to be inferred from data

• δt is the integration time step

Objective
ApproximateMUN is approximated by a data-driven model represented under the
form of a neural network whose parameters are θ: Mθ[x(t)]

It has been done using high-resolution model as the ”truth” [Rasp et al., 2018,
Brenowitz and Bretherton, 2018, O’Gorman and Dwyer, 2018, Bolton and Zanna, 2019]:

• High-resolution model are very expensive (especially in the case of coupled
fast/slow dynamics)

• There is no guaranty that high-resolution models will converge toward the
observed state.

17

Using ML for parametrization

We now assume that we know partially the system dynamics:

x(t+ δt) = Mφ[x(t)] +MUN[(t)],

where:

• x(t) is the state of the dynamical system

• Mφ is the physical model (assumed to be known a priori)

• MUN is the unresolved component of the dynamics to be inferred from data

• δt is the integration time step

Objective
ApproximateMUN is approximated by a data-driven model represented under the
form of a neural network whose parameters are θ: Mθ[x(t)]

It has been done using high-resolution model as the ”truth” [Rasp et al., 2018,
Brenowitz and Bretherton, 2018, O’Gorman and Dwyer, 2018, Bolton and Zanna, 2019]:

• High-resolution model are very expensive (especially in the case of coupled
fast/slow dynamics)

• There is no guaranty that high-resolution models will converge toward the
observed state.

17

Using ML for parametrization

We now assume that we know partially the system dynamics:

x(t+ δt) = Mφ[x(t)] +MUN[(t)],

where:

• x(t) is the state of the dynamical system

• Mφ is the physical model (assumed to be known a priori)

• MUN is the unresolved component of the dynamics to be inferred from data

• δt is the integration time step

Objective
ApproximateMUN is approximated by a data-driven model represented under the
form of a neural network whose parameters are θ: Mθ[x(t)]

It has been done using high-resolution model as the ”truth” [Rasp et al., 2018,
Brenowitz and Bretherton, 2018, O’Gorman and Dwyer, 2018, Bolton and Zanna, 2019]:

• High-resolution model are very expensive (especially in the case of coupled
fast/slow dynamics)

• There is no guaranty that high-resolution models will converge toward the
observed state.

17

Determining a parametrization from sparse and noisy data

Few comments:

• If the physical model is hard-coded within a neural network, the problem is
equivalent to what has been presented in the first part, but it is very costly in
general. The physical model, which can be complex, has to be coded in a neural
network framework.

• The time step of the observation is usually larger than the integration time step.
• We generally cannot compute the gradient (or adjoint) of the physical model.

Position of our approach:

• We do not rely on an adjoint of the physical model
• the training of the neural network is made separately to the integration of the
physical model.

Related works in the context of model error estimations in data
assimilation [Bonavita and Laloyaux, 2020].

18

Determining a parametrization from sparse and noisy data

Few comments:

• If the physical model is hard-coded within a neural network, the problem is
equivalent to what has been presented in the first part, but it is very costly in
general. The physical model, which can be complex, has to be coded in a neural
network framework.

• The time step of the observation is usually larger than the integration time step.

• We generally cannot compute the gradient (or adjoint) of the physical model.

Position of our approach:

• We do not rely on an adjoint of the physical model
• the training of the neural network is made separately to the integration of the
physical model.

Related works in the context of model error estimations in data
assimilation [Bonavita and Laloyaux, 2020].

18

Determining a parametrization from sparse and noisy data

Few comments:

• If the physical model is hard-coded within a neural network, the problem is
equivalent to what has been presented in the first part, but it is very costly in
general. The physical model, which can be complex, has to be coded in a neural
network framework.

• The time step of the observation is usually larger than the integration time step.
• We generally cannot compute the gradient (or adjoint) of the physical model.

Position of our approach:

• We do not rely on an adjoint of the physical model
• the training of the neural network is made separately to the integration of the
physical model.

Related works in the context of model error estimations in data
assimilation [Bonavita and Laloyaux, 2020].

18

Determining a parametrization from sparse and noisy data

Few comments:

• If the physical model is hard-coded within a neural network, the problem is
equivalent to what has been presented in the first part, but it is very costly in
general. The physical model, which can be complex, has to be coded in a neural
network framework.

• The time step of the observation is usually larger than the integration time step.
• We generally cannot compute the gradient (or adjoint) of the physical model.

Position of our approach:

• We do not rely on an adjoint of the physical model
• the training of the neural network is made separately to the integration of the
physical model.

Related works in the context of model error estimations in data
assimilation [Bonavita and Laloyaux, 2020].

18

Proposed approach

More details in [Brajard et al., 2020b]

Observation Setup
Observations yk are assumed to be made at each ∆t time step such as ∆t = Ncδt
(Nc is a positive integer and δt is the integration time step).

Simplified description of the algorithm:

1. Estimating the state xa
1:K . At each time tk , we calculate a forecast xf :

xf
k+1 = xf(tk +∆t) = (Mφ)Nc (xa

k)

An observation yk+1 is assimilated to produce an analysis state xa
k+1

2. Determining an estimation of the unknown part of the model. We assume that:
• x(t + ∆t) ≈ (Mφ)Nc (x(t)) + Nc · MUN[x(t)]
• x(t) ≈ xa(t)

We consider thatMUN(xk) ≈ zk+1 = 1/Nc ·
(
xa
k+1 − xf

k+1

)
3. Training a neural networkMθ by minimising the loss
L(θ) =

∑K−1
k=0 ||Mθ(xa

k)− zk+1||2

4. Using the hybrid modelMφ +Mθ to produce new simulations (e.g. to make
forecasts).

19

Algorithm setup

Data assimilation
EnKF-N with a ensemble of size 50 an additive noise at each time step δt
https://github.com/nansencenter/DAPPER

Neural network

• The neural network is composed of 3 convolutional or 3 multi-layer perceptrons
layers. Hyperparameters (size of each layer, batchsize, optimizer, regularization, ...)
are determined via Bayesian optimisation (hypertopt package).

• An upper bound hybrid model is trained with ”true data” (xa
k = xk).

• The “target” (i.e. the model error) is estimated using the analysis increments,(
xa
k+1 − xf

k+1

)
.

•
(
xa
k+1 − xf

k+1

)
contains both i.c. and model error. The former is assumed to have

high frequencies.
• Therefore the time series xa

0:K estimated by DA is filtered using a simple low-pass
filter (a rolling mean) producing a smoothed time series xs

0:K

20

https://github.com/nansencenter/DAPPER

Numerical experiments: Lorenz 2-scales

• The “unknown” model
(to be represented by a neural network)

• The physical model
(assumed to be known)

dxn
dt

= ψ+
n (x) + F − h c

b

9∑
m=0

um+10n ,

dum
dt

=
c
b
ψ−
m (bu) + h c

b
xm/10,

ψ±
n (x) = xn∓1(xn±1 − xn∓2)− un,

n = 0, · · · , Nx − 1 (Nx = 36), m = 0, · · · , Nu − 1 (Nu = 360), (c, b, h, F) = (10, 10, 1, 10).

Data generation
The full model (+) is integrated using RK4 scheme with an integration time
step δt = 0.005 to generate the true field x0:K . The observations are produced at
each ∆t = 3 · δt time steps by perturbing the true field with a centred Gaussian of
standard deviation σo = 1.

21

Numerical experiments: Lorenz 2-scales

Hovmøller plot of the true and hybrid models
RMSE-f vs time RMSE-f vs obs interval∆t

▶ The hybrid model has predictive skill until 3-4 MTU, i.e. approximately until 3
Lyapunov times.

▶ The skill is not much sensitive to changing the number of observations, Ny .

▶More sensitive to observation frequency: for large ∆t the target analysis increment
contains coupled signal between resolved and unresolved scales.

22

Numerical experiments: atmosphere-ocean model MAOOAM

▶MAOOAM: Modular arbitrary-order
ocean-atmosphere model [De Cruz et al., 2016]

▶A two-layer QG atmosphere coupled, thermally
and mechanically, to a QG shallow-water ocean
layer in the β-plane.

▶MAOOAM is resolved in spectral space, for
streamfunction and potential temperature, with
adjustable resolution.

Configurations

1. Truth: na = 20 and no = 8 modes for atmosphere and ocean. Total dimension
Nx = 56.

2. Truncated: na = 10 and no = 8 modes for atmosphere and ocean. Total
dimension Nx = 36.

▶ The truncated model is missing 20 high-order atmospheric variables
23

Numerical experiments: atmosphere-ocean model MAOOAM

▶Both ocean and atmosphere are observed (coupled DA) every 27 hours (see
[Tondeur et al., 2020])

▶ There is not locality in spectral space so the NN is made of 3 layers multi-layer
perceptrons

RMSE-f of hybrid and truncated MAOOAM models
RMSE-f(lead time τ) ψo,2(2 years) θo,2(2 years) ψa,1(1 day)
Truncated 0.23 0.21 0.36
Perfect obs. hybrid 0.07 0.07 0.23
DA hybrid 0.10 0.06 0.28

• The hybrid models have superior skill to the truncated model.
• The improvement is larger for the ocean that is fully resolved: it is thus fully due
to an enhanced representation of the atmosphere-ocean coupling processes.

• The atmosphere is improved less: the hybrid is not very good in representing the
fast processes.

• But they are also poorly observed with ∆t = 27 hrs

24

Numerical experiments: atmosphere-ocean model MAOOAM

Reconstructing the model attractor

▶ Cross-section of the attractor
for two key variables ψa,1 and
ψo,2 .

▶ The truncated model visits
areas of the phase space that
are not admitted in the real
dynamics.

▶Discrepancies are reduced by
the hybrid models; some states
remain out of the true model
attractor, tough, but much fewer.

25

Numerical experiments: unobserved variable

[Filoche et al., 2020]

Available information :

Noisy Observations: Yt = It + εR

Incomplete dynamics: ∂w∂t =?

Hybrid model: Combining a numerical scheme of the known physics with a CNN

MP +ML(θ) = Mθ the resolvent of the following PDE-system

∂I
∂t

+ w.∇I = 0

∂w
∂t

+ fθ(w) = 0

∇I = 0, ∂Ω

w = 0, ∂Ω

Goal : Training the CNN i.e. Learning a dynamics on a never-observed variable

26

Numerical experiments: unobserved variable

[Filoche et al., 2020]

Available information :

Noisy Observations: Yt = It + εR

Incomplete dynamics: ∂w∂t =?

Hybrid model: Combining a numerical scheme of the known physics with a CNN

MP +ML(θ) = Mθ the resolvent of the following PDE-system

∂I
∂t

+ w.∇I = 0

∂w
∂t

+ fθ(w) = 0

∇I = 0, ∂Ω

w = 0, ∂Ω

Goal : Training the CNN i.e. Learning a dynamics on a never-observed variable

26

Numerical experiments: unobserved variable

[Filoche et al., 2020]

Available information :

Noisy Observations: Yt = It + εR

Incomplete dynamics: ∂w∂t =?

Hybrid model: Combining a numerical scheme of the known physics with a CNN

MP +ML(θ) = Mθ the resolvent of the following PDE-system

∂I
∂t

+ w.∇I = 0

∂w
∂t

+ fθ(w) = 0

∇I = 0, ∂Ω

w = 0, ∂Ω

Goal : Training the CNN i.e. Learning a dynamics on a never-observed variable 26

Numerical experiments: unobserved variable

All optimizations are done with deep learning tools based on automatic differentiation

sliding	window

4D-Var

27

Numerical experiments: unobserved variable

Model evaluation

We produce forecasts over multiple initial conditions (not used during the training)
and compare them with ground truth trajectories calculating RMSE on I. We compare
the following dynamics:
▷ Incomplete physics-based model
▷ Hybrid model trained on perfect data
▷ Hybrid model trained with our method

28

Numerical experiments: unobserved variable

Model evaluation

We produce forecasts over multiple initial conditions (not used during the training)
and compare them with ground truth trajectories calculating RMSE on I. We compare
the following dynamics:
▷ Incomplete physics-based model
▷ Hybrid model trained on perfect data
▷ Hybrid model trained with our method

28

Conclusion

▶Part I - Build a surrogate model from partial and noisy data:

• Accurate reproduction of the more energetic (slower) scale and of the unstable
Lyapunov exponents

• Method sensitive to data noise, less on data spatial density as long as > 50% of
domain observed.

▶Part II - Build a hybrid model made of a physics-based + data-driven surrogate of
the unresolved scales

• Little sensitive to data noise and spatial density BUT more on data temporal
frequency.

• No need for the adjoint of the truncated model.

▶Caveat: The hybrid model can be expensive to compute (different computing
requirement, CPU multiprocessors vs GPU).

▶ Future directions:

1. Application to non-autonomous systems
2. Accommodate the estimation of the hybrid model error.

29

Conclusion

▶Part I - Build a surrogate model from partial and noisy data:

• Accurate reproduction of the more energetic (slower) scale and of the unstable
Lyapunov exponents

• Method sensitive to data noise, less on data spatial density as long as > 50% of
domain observed.

▶Part II - Build a hybrid model made of a physics-based + data-driven surrogate of
the unresolved scales

• Little sensitive to data noise and spatial density BUT more on data temporal
frequency.

• No need for the adjoint of the truncated model.

▶Caveat: The hybrid model can be expensive to compute (different computing
requirement, CPU multiprocessors vs GPU).

▶ Future directions:

1. Application to non-autonomous systems
2. Accommodate the estimation of the hybrid model error.

29

Conclusion

▶Part I - Build a surrogate model from partial and noisy data:

• Accurate reproduction of the more energetic (slower) scale and of the unstable
Lyapunov exponents

• Method sensitive to data noise, less on data spatial density as long as > 50% of
domain observed.

▶Part II - Build a hybrid model made of a physics-based + data-driven surrogate of
the unresolved scales

• Little sensitive to data noise and spatial density BUT more on data temporal
frequency.

• No need for the adjoint of the truncated model.

▶Caveat: The hybrid model can be expensive to compute (different computing
requirement, CPU multiprocessors vs GPU).

▶ Future directions:

1. Application to non-autonomous systems
2. Accommodate the estimation of the hybrid model error.

29

Reference i

Abarbanel, H. D., Rozdeba, P. J., and Shirman, S. (2018).
Machine learning: Deepest learning as statistical data assimilation problems.
Neural computation, 30(8):2025–2055.

Bocquet, M., Brajard, J., Carrassi, A., and Bertino, L. (2019).
Data assimilation as a learning tool to infer ordinary differential equation representations of dynamical models.
Nonlinear Processes in Geophysics, 26(3):143–162.

Bocquet, M., Brajard, J., Carrassi, A., and Bertino, L. (2020).
Bayesian inference of chaotic dynamics by merging data assimilation, machine learning and expectation-maximization.
Foundations of Data Science, 2(1):55.

Bolton, T. and Zanna, L. (2019).
Applications of deep learning to ocean data inference and subgrid parameterization.
Journal of Advances in Modeling Earth Systems, 11(1):376–399.

Bonavita, M. and Laloyaux, P. (2020).
Machine learning for model error inference and correction.
Journal of Advances in Modeling Earth Systems, page e2020MS002232.

Brajard, J., Carrassi, A., Bocquet, M., and Bertino, L. (2020a).
Combining data assimilation and machine learning to emulate a dynamical model from sparse and noisy observations: A case
study with the Lorenz 96 model.
Journal of Computational Science, 44:101171.

Brajard, J., Carrassi, A., Bocquet, M., and Bertino, L. (2020b).
Combining data assimilation and machine learning to infer unresolved scale parametrisation.
in press in Philosophical Transaction A.

30

Reference ii

Brenowitz, N. D. and Bretherton, C. S. (2018).
Prognostic validation of a neural network unified physics parameterization.
Geophysical Research Letters, 45(12):6289–6298.

De Cruz, L., Demaeyer, J., and Vannitsem, S. (2016).
The modular arbitrary-order ocean-atmosphere model: Maooam v1. 0.
Geoscientific Model Development, 9(8).

Filoche, A., Brajard, J., Charantonis, A., and Béréziat, D. (2020).
Completing physics-based models by learning hidden dynamics through data assimilation.
In NeurIPS 2020, workshop AI4Earth, Vancouver (virtual), Canada.

Nguyen, D., Ouala, S., Drumetz, L., and Fablet, R. (2020).
Assimilation-based learning of chaotic dynamical systems from noisy and partial data.
In ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 3862–3866. IEEE.

O’Gorman, P. A. and Dwyer, J. G. (2018).
Using machine learning to parameterize moist convection: Potential for modeling of climate, climate change, and extreme
events.
Journal of Advances in Modeling Earth Systems, 10(10):2548–2563.

Pathak, J., Lu, Z., Hunt, B. R., Girvan, M., and Ott, E. (2017).
Using machine learning to replicate chaotic attractors and calculate lyapunov exponents from data.
Chaos: An Interdisciplinary Journal of Nonlinear Science, 27(12):121102.

Rasp, S., Pritchard, M. S., and Gentine, P. (2018).
Deep learning to represent subgrid processes in climate models.
Proceedings of the National Academy of Sciences, 115(39):9684–9689.

31

Reference iii

Tondeur, M., Carrassi, A., Vannitsem, S., and Bocquet, M. (2020).
On temporal scale separation in coupled data assimilation with the ensemble kalman filter.
Journal of Statistical Physics, pages 1–25.

julien.brajard@nersc.no

32

mailto:julien.brajard@nersc.no

	Build an emulator
	Unresolved scale parametrization
	2-scales Lorenz model
	Coupled ocean-atmosphere model MAOOAM
	The case of a never-observed variable

